For authors
Submission status

Archive (English)
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
VOLUME 78 | ISSUE 12 | PAGE 1271
Universal temperature corrections to the free energy for the gravitational field
G. E. Volovik*, A. Zelnikov+
*Low Temperature Laboratory, Helsinki University of Technology , FIN-02015 HUT, Finland
*L. D. Landau Institute for Theoretical Physics RAS, 117334 Moscow, Russia
+Theoretical Physics Institute, University of Alberta Edmonton, Alberta, Canada T6G 2J1
+P. N. Lebedev Physics Institute RAS, 119991 Moscow, Russia

PACS: 04.62.+v, 05.30.-d, 67.90.+z
The temperature correction to the free energy of the gravitational field is considered which does not depend on the Planck energy physics. The leading correction may be interpreted in terms of the temperature dependent effective gravitational constant G_{\rm eff}. The temperature correction to G_{\rm eff}^{-1} appears to be valid for all temperatures T\ll E_{\rm
Planck}. It is universal since it is determined only by the number of fermionic and bosonic fields with masses m\ll T, does not contain the Planck energy scale E_{\rm Planck} which determines the gravitational constant at T=0, and does not depend on whether or not the gravitational field obeys the Einstein equations. That is why this universal modification of the free energy for gravitational field can be used to study thermodynamics of quantum systems in condensed matter (such as quantum liquids superfluid 3He and 4He), where the effective gravity emerging for fermionic and/or bosonic quasiparticles in the low-energy corner is quite different from the Einstein gravity.

Download PS file (GZipped, 69.9K)  |  Download PDF file (188.9K)