Transmission coefficient and the localization length of an electron in \(N \) bound disordered chains

O. N. Dorokhov

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR, Chernogolovka, Moscow Province

(Submitted 24 August 1982)

A model of \(N \)-coupled chains with defects for which it is possible to prove rigorously the presence of localization with arbitrarily strong coupling between chains is examined. \(N \) different localization lengths arise under these conditions.

PACS numbers: 63.50. + x

The exact solution of the problem of localization of single-electron states is known only for an elementary metallic chain, when the localization length \(l^* \) is of the order of the free path \(l \). On the other hand, there are strong arguments in favor of localization of all single-electron states in a metallic wire and in the two-dimensional case when \(l^* \gg l \) with weak disordering \(p_{\text{F}} \gg 1 \). For this reason, it is interesting to examine this problem for \(N \) coupled chains.

As is well known, the localization length enters explicitly into the expression for the decrease in the electron transmission coefficient with increasing dimensions \(L \) of the disordered region: \(T \sim \exp\left(-L/l^* \right) \). Starting from this, in order to determine \(l^* \) we shall investigate the behavior of the transmission coefficient \(T(L) \). This approach to the problem turns out to be simpler than investigating the density-density correlation function. It is assumed that the disordered segment \((0, L)\) consists of \(N \) chains, which can be represented as lying on a cylindrical surface parallel to its axis. The electron, together with the predominant motion along the chain, can hop in a perpendicular direction. Thus, in the system of functions \(\{ \psi_n(x) \} \), where \(\psi_n(x) \) corresponds to the \(n \)-th chain, the Hamiltonian has the form

\[
H_{nn'} = \left[-\frac{1}{2m} \frac{d^2}{dx^2} + U_n(x) \right] \delta_{nn'} + t (\delta_{n-1}, n' + \delta_{n+1}, n').
\] (1)

Here \(U_n(x) \) is a random impurity potential for the \(n \)-th chain and \(t \ll E_\text{F} \) is the overlap integral describing electron hops to neighboring chains. In order to restrict the analysis to \(N \) chains, we shall supplement (1) with the following boundary condition:
\(\psi_N(x) = e^{i\alpha} \psi_0(x). \)

The phase factor \(e^{i\alpha} \), which is responsible for the phase increase \(\alpha \) with each revolution around the cylinder axis, destroys the symmetry with respect to time inversion (\(\psi \rightarrow \psi^* \)). This can be attributed to some magnetic flux inside the cylinder.

It is convenient to go over to a new system of wave functions:

\[
\tilde{\psi}_n(x) = \frac{1}{\sqrt{N}} \sum_{n'=0}^{N-1} \exp(2\pi i n'/N) \psi_{n'}(x),
\]

\[
\tilde{H}_{nn'} = \left[-\frac{1}{2m} \frac{d^2}{dx^2} + 2t \cos \left(\frac{(2\pi n + a)}{N} \right) \right] \delta_{nn'} + \frac{1}{N} \sum_{n''=0}^{N-1} U_{n_0}(x) \exp(2\pi i n_0(n - n' - 1)/N).
\]

In the ordered regions, where \(U_n(x) = 0 \), it is possible to write immediately the solution of the Schrödinger equation in the form

\[
\tilde{\psi}_n(x) = A_n \exp(ik_n x) + B_n \exp(-ik_n x),
\]

\[
k_n = \sqrt{2mE - 2t \gamma^{-1} \cos \left(\frac{(2\pi n + a)}{N} \right)}.
\]

The constants \(A_n^L, B_n^L \) and \(A_n^R, B_n^R \), which correspond to solution (5) on the left and right of the disordered section \((0, L)\), are related by a linear transformation

\[
\begin{bmatrix}
A_n^R \\
B_n^R
\end{bmatrix} = \hat{m} \begin{bmatrix}
A_n^L \\
B_n^L
\end{bmatrix},
\]

where \(\hat{m} \) is a 2\(N\)-dimensional complex matrix. The necessary information on scattering is contained in the matrix \(\hat{M} = \hat{m}^* \hat{m} \), which was already introduced in Ref. 6 for a single chain. The condition for flux conservation imposes certain constraints on \(\hat{m} \) and \(\hat{M} \). We shall immediately write \(\hat{M} \) in a form that satisfies these requirements:

\[
\hat{M} = \begin{bmatrix}
\hat{u}^* & \hat{u}^* \\
\hat{v}^* & \hat{v}^*
\end{bmatrix} \begin{bmatrix}
\hat{\Gamma} & \hat{\gamma} \\
\hat{\gamma} & \hat{\Gamma}
\end{bmatrix}.
\]

Here \(\hat{u}, \hat{v} \) are unitary matrices, while \((\hat{\Gamma})_{nn'} = \Gamma_n \delta_{nn'} \) is a diagonal real matrix which determines the \(N \) transmission coefficients. In fact, if there is an incident flux \(j_A^L = (A^+ A)^L \) and a reflected flux \(j_B^L = (B^+ B)^L \) on the left of the disordered region, while on the right there is only a transmitted flux \(j_A^R = (A^+ A)^R \), then it is possible to express \(j_A^R \) in terms of the amplitude \(A_n^R \) of the incident flux:

\[
j_A^R = (A^+)^L \hat{u}^* \left(2[\text{ch} \hat{\Gamma} + 1]^{-1} \right) \hat{\gamma} (A^+)^L.
\]

The diagonal matrix in braces in (9) contains \(N \) transmission coefficients \(T_n = 2/(\text{ch} \Gamma_n + 1) \).
In order to obtain a Fokker-Planck equation for the distribution function \(W(L; \hat{\Gamma}, \hat{\mu}, \hat{\nu}) \), it is necessary to follow the change in \(W(L \ldots) \) with a small increase in the length \(L \) of the disordered section. We shall assume that the transmission amplitude through the separate impurity \(d = \cos \gamma \) is close to unity: \(\gamma \approx 1, \delta = 0 \). Thus the scattering matrix \(\hat{m} \) for an isolated impurity at the point \(x_0 \) of chain \(n_0 \) has the form:

\[
\hat{m}(x_0 n_0) = 1 + \begin{bmatrix}
0 & \hat{\gamma}(x_0 n_0) \\
\hat{\gamma}^*(x_0 n_0) & 0
\end{bmatrix},
\]

\[
[\hat{\gamma}(x_0 n_0)]_{nn'} = -i \gamma N^{-1} \exp[-i(k_n + k_{n'}) x_0 + 2\pi n_0 (n - n') / N].
\] (10)

Here we shall consider only the simplest case when, in deriving the Fokker-Planck equation, the averaging over the rapid dependences is performed with the help of the relation

\[
\gamma_{nn'} \hat{\gamma}_{mm'}^* = \gamma^2 N^{-2} \delta_{nn'} \delta_{mm'}.
\] (11)

Using (6) and (10), we see that (11) is satisfied when \(N \) is an odd number, that there is no symmetry with respect to time inversion (i.e., \(\alpha / \pi \) is not an integer) and that the following inequality is satisfied:

\[
tl/v_F N^3 \gg 1.
\]

Relation (11) is the key to simplifying the problem. In this case the distribution of \(\hat{\Gamma} \) separates from the distributions of the matrices \(\hat{\mu}, \hat{\nu} \). We note that this simplification does not occur for systems consisting of \(N \) chains lying on a surface and, in particular, for two chains.

The equation for the distribution function \(W(L, \hat{\Gamma}) \), where \(\hat{\Gamma} = c \Gamma \hat{\Gamma} \), (i.e., \(T_n = 2/(F_n + 1) \)) has the form

\[
NL \frac{\partial W}{\partial L} = \sum_{n = 0}^{N - 1} \frac{\partial}{\partial F_n} \left(F_n^2 - 1 \right) \left[\frac{\partial}{\partial F_n} - 2 \sum_{n' \neq n} \frac{1}{F_n - F_{n'}} \right] W(L, \hat{\Gamma}).
\] (12)

An analysis of Eq. (12) shows that it contains \(N \) different exponential dependences \(F_n \sim \exp(L / \lambda_n^*) \) and in addition the exponents differ generally by a quantity of the order of \(L / NL \). This means that at distances \(L \gg NL \) all \(F_n \) have different orders of magnitude. Let us renormalize \(F_n \) in increasing order. Thus for \(L \gg NL \) we have

\[
F_0 \ll F_1 \ll \ldots \ll F_{N - 1}.
\] (13)

The strong inequality (13) allows decoupling Eq. (12) into \(N \) equations for the distribution functions \(W_n(L, F_n) \):

\[
NL \frac{\partial W_n}{\partial L} = \left[\frac{\partial}{\partial F_n} \left(F_n^2 - 1 \right) \frac{\partial}{\partial F_n} - 2n \frac{\partial}{\partial F_n} F_n \right] W_n(L, F_n),
\] (14)
where the number 1 next to F^2_n should be retained only for $n = 0$, when (14) coincides with the equation for a single chain\(^5\) to within the substitution $l \to Nl$.

An equation for N different localization lengths follows from (14) (l^* is the localization length in an isolated chain):

$$I_n^* (N) = Nl^* / (1 + 2n); \quad n = 0, 1, \ldots, N - 1.$$ \hspace{1cm} (15)

They have the curious property that the average of their inverses is independent of N and is equal to $1/l^*$. The largest localization length $I^*_N(N) = Nl^*$ will make the greatest contribution to long-wavelength kinetic phenomena.

I thank L. P. Gor’kov for a discussion of the results.

Translated by M. E. Alferieff
Edited by S. J. Amoretti

Structure functions for the electrodisintegration of the deuteron at a momentum transfer of 1.8 GeV\(^2\)

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR

(Submitted 24 July 1982)

Structure functions are found for the electrodisintegration of the deuteron near the threshold in the relativistic region with $q^2_{\text{max}} = 1.8 \text{ GeV}^2$ and $\nu = 0.5–0.65 \text{ GeV}$.

PACS numbers: 13.40.Fn, 14.20.Pt, 13.60. – r

One of the fundamental problems of hadron physics is to determine the nucleon-nucleon (NN) potential. Information on the NN interaction slightly off the mass shell is particularly important. Such information can be found from the electrodisintegration of the deuteron at large momentum transfer. Under these conditions there should be a cumulative effect, interpreted as scattering by a state which is an “overlap” of two