Effect of a random voltage on equilibrium current
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Source fluctuations in the current (Langevin fluctuations) in a quantum conductor
depend on the resistance of the external circuit. The possibility that the
spectral density of the voltage fluctuations could be a nonmonotonic function of
the magnitudes of the quantum and classical resistances is discussed.
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Research on electron transport has been concerned primarily with two current-flow
regimes: Either the voltage or the current in the circuit is fixed. The first situation is
simpler to analyze. In particular, for a quantum conductor with dimensions L<L
(L pn is the phase relaxation length), the statistics of the charge transport over long time
intervals can be described completely by means of a matrix for the elastic scattering of
electrons.! When the current is fixed, the situation is considerably more complicated. The
simplest way to study it is to invoke the concept of Langevin forces.” Along that ap-
proach, in (for example) a closed circuit containing a series connection of a quantum
resistance and a classical resistance (» and R), one represents the fluctuations of the total
current, 81, as the sum of “source” current fluctuations j in the quantum resistor and a
contribution from fluctuations of the voltage drop V across the classical resistance:

dl=38j+ 6V, (1)
where g=1/r.

In the limit r/R—0, in which the low-frequency fluctuations of the total current tend
toward zero (61 ,_.o—0), the source fluctuations j should cancel out, and we should have

5vw=ﬂg:_5jw=0' (2)

Along this approach, which was taken (in particular) in Refs. 3 and 4, it is usually
assumed that the source current fluctuations j, are determined exclusively by the ex-
pectation value of the voltage drop across resistance r {or the expectation value of the
current), and it is assumed that the correlation functions (jj) can be calculated as in the
problem with a fixed voltage V= (I)r. In the present letter we are interested in the effect
of fluctuations of the voltage V on the source current fluctuations j,{V} at equilibrium.
This effect can be substantial. It can lead to a significant change in the resultant magni-
tude of the fluctuations in the total current and in the voltage drop across the quantum
resistance. The effect of voltage fluctuations on electron transport was studied by Hek-
king et al.,” who reached the conclusion that the probability for the passage of electrons
from one reservoir to another is greatly modified by the emission of photons (voltage
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oscillations), with the result that the current—voltage characteristic becomes nonlinear at
low currents, while the linear conductance is suppressed. We believe that the probability
for the passage of electrons in a semiclassical external field set up by voltage fluctuations
changes only slightly. In this letter we concentrate on the effect which stems from the
phase shift (of the real part of the action describing the motion of the electron), which
was studied previously in Ref. 6. When the phase shift is taken into account, the nonsi-
multaneous correlation function of the currents depends on the voltage fluctuations in the
following way:®

'

2e? ,
()i, = dedE CXP( (tl—tz))n(E)[l—n(E )]

X2 RIZ+TE)N1-TE)[D(1,— 1) +®*(t,—1)]}, 3

m

where
e [
(I>(t2—t1)=exp(i f—LJ 6V(T)d7>. (4)

Here T,, is an eigenvalue of the matrix ##* (¢ is the matrix of transmission amplitudes
through the quantum resistor; we ignore the energy dependence of these amplitudes), and
n(E)=[exp(E/@)+1]"! (O is the temperature in energy units). The angle brackets
( )y mean an expectation value over voltage fluctuations. We find this expectation value
by a procedure which is independent of finding the expectation value over the electron
degrees of freedom, which is denoted by { ). Assuming that the resistor R is classical, we
write the voltage drop across it as

= V() =I()R+ Vg(1), (5)
where V() are “source” voltage fluctuations, which we assume to be Gaussian. Their
spectral density is given by the Nyquist formula’

1
exp(hw/ 0)-1 ©)

For the voltage across the quantum resistance we find the following expression from Eqgs.
(1) and (4):

1
(Vi(w))=2R(w)ho| 5

V———( JR=Vg). @

The result of taking the expectation value of the exponential function,

<exp i %ftzV(t’)dt’D =®(6,~1,),

1%
can be written in terms of irreducible correlation functions:

erR

CIJ(tz—t]):exp( mfj dt’ dt"(VR(t VR(t")>) ( m—) . (8
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Here

X()\)=<exp(i)\f[2j(t’)dt’)>
51

is a characteristic function for the probability that a certain charge

Q=ft Yt dt

will be transported by fluctuation currents j over a time |t,—¢].

A method for ordering the operators j at different times was described in Ref. 8 in
an analysis of the phase shift of a quantum galvanometer (spin) in the field of tunneling
electrons. The situation in which we are interested in the present paper is analogous: The
role of the “spin” is played by an electron, and we are analyzing the phase shift of this
electron. Expression (8) can be simplified in two limiting cases; that of short times,
{t;—t{| < Teon > Where 7, is the correlation time of the random process V(¢), and that of
long times, |t,~t|> 1., . If At=|t,—t,|<€ 7., expression (8) is dominated by the
binary voltage correlation function at coincident times:

(D(tz—tl)ZCXP[‘Q(’z‘tl)Z], 9
1 ¢€? r? ) r’R?
=37 W(VR(O)>V+__+—R_)_2<<] 0y (10)

Expressions (9) and (10) give the correct time dependence of & under the condition
ar’ >1, ie., under the condition that ® become vanishingly small at times
At~ 7. If the conditions arzm<1 and @(7.,,;)~1 hold instead, the asymptotic be-
havior at A¢> 7, is important, with ®(Ar)=exp(— yAt), where
1 2 r’2RO i 1 | erR )
VT2 (rr R T M A N T R(FHR)
1e* r2RO 1 ¢* rR? "
IR GIRE IR Ry a0 (1)
It follows from (10) and (11) that in the limit »/R—0 the decay of ®(Ar) is
governed exclusively by the source current fluctuations j. We write the results for the

spectral density of the fluctuations in the voltage across the quantum resistor at a low
frequency:

r’20R  (rR)?
Suw=0)= [ dVOV0) = (3 o+ s o) (12

where, in the case a<<(}? (€} is a cutoff frequency which determines the dispersion of the
resistance), we have

2
(o) =278 [T20+T,(1=T,)G()]. (13)

In the case y<<() we have
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G(y)=0(1+Cy), (14)
where C is a constant on the order of one. In the case y>{) we instead have

hy £
G(‘y): —77_‘111 7 . (15)

In the case a>Q? we have
o2
(Fom0)=2 3= 2 (T30 +T,(1=T,)0F (a)], (16)

where, in the case #a<®, we have
Fla)=1 1 ah?
a)=1+-—
( 6 @2
and, in the case ﬁ\/;>®, we have
4 Va
Fla)=—=——.
Jah ©
In this approximation, the linear conductance of the quantum resistance and thus of
the entire circuit is insensitive to fluctuations. A direct averaging of the current operator
will obviously yield the same result, since we are considering only the phase shift, not the
change in probabilities. We intend to discuss whether this situation contradicts the
Nyquist theorem in a separate paper.

We turn now to an analysis of the behavior of the parameters vy and « as a function
of the resistances r and R. In the limit of a small external resistance R/r<€1 we find from
(11)

82

Y= PRQ’

and the difference between the spectral density calculated for the case with quantum
effects and the classical value S is

Y —— —

S, 12 & r°

We turn now to the regime which seems the most interesting to us: that with
R/r=1, with negligible fluctuations in Vg, and with a linear decay, so we have
® =exp(— yAr). If there is only a slightly open “channel” in the quantum resistance
(T<<1), the statistics of the charge transport can be represented as two independent
Poisson charge-transport processes, in which charge is transported in opposite directions
with an average electron-transport velocity 20 (¢/h)T. The characteristic function in this
case Is

T )\)

= —_— —_— i 2_
x(\) exp( 86 5 sin 3
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From (11) we then find

2

1
=) (1)
In the case e’r/(%2)=mm, where m is an integer expression, expression (17) vanishes.
The physical reason for this result is that the phase shift of an electron during the
tunneling of another electron is

er €2r

7| ja=5=0,

T e
y=80 — sm(

and the phase does not undergo relaxation under the condition ¢=2mm . In this situation
we should of course consider dynamic fluctuations in the phase shift, §¢= ¢~ ().
Under the condition \/F&<<q§>= e’r/h , this deviation of the spectral density of the
fluctuations in the voltage across the quantum resistor from a monotonic behavior may be
observed. The scale of the deviations of the spectral density from the spectral density
expected classically is

Scl

r( -1 e 2T
= n-——- .
( w2 40T
We wish to repeat that the primary assertion of this letter is that there is a nontrivial
dependence of the source current fluctuations on the voltage fluctuations.
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