Evolution of small perturbations of isotropic cosmological models with one-loop quantum gravitational corrections

A. A. Starobinskiǐ
L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR

(Submitted 3 September 1981)

Pis'ma Zh. Eksp. Teor. Fiz. 34, No. 8, 460–463 (20 October 1981)

Equations have been derived for small perturbations of homogeneous isotropic cosmological models, which take into account in the one-loop approximation the quantum gravitational effects produced as a result of interaction of the quantum fields of matter with the self-consistent gravitational field.

PACS numbers: 98.80.Dr, 95.30.Sf

The quantum gravitational effects can be taken into account in the one-loop approximation by adding to the right side of the Einstein equations the average energy-momentum tensor \(T^{\nu \lambda} \) of all the quantum fields, including the effect of fluctuations of the gravitational field. The obtained equations should be interpreted as the equations for the average values of the space-time metric. These equations apply if the quantum fluctuations of the metric are small compared with its average values. This occurs if the occupation numbers of all the considered modes of the gravitational field \(n_k \gg 1 \). This condition clearly is satisfied for homogeneous metrics if

\[|\mathcal{R}_{iklm} R^{iklm}| \ll \mathcal{L}^4, \quad \mathcal{L} = \sqrt{G\hbar/c^3} \text{ (below we shall assume that } c = h = 1) \]

Suppose that the metric under consideration is given by

\[ds^2 = dt^2 - a^2(t) \left(\gamma_{\alpha\beta} + h_{\alpha\beta} \right) dx^\alpha dx^\beta, \tag{1} \]

where \(\alpha \) and \(\beta = 1, 2, 3 \), \(\gamma_{\alpha\beta} \) is a three-dimensional constant-curvature metric equal to \(1, 0, \text{ or } -1 \) (these three cases are denoted by \(\mathcal{K} = 1, 0, -1 \), respectively), and \(|h^{\alpha\beta}| \ll 1 \).

To obtain equations for \(a(t) \) and \(h_{\alpha\beta} \) in a one-loop approximation, we must calculate \(\langle T^k_i \rangle \) for the metric (1).

We assume that the quantum fields are free and examine the most interesting region \(|\mathcal{R}_{iklm} R^{iklm}| \gg m^4 \), where the rest mass \(m \) of particles can be ignored in first approximation (it is understood that \(m \mathcal{L} \ll 1 \)). We also assume that all the quantum fields (or at least most of them) become conformally covariant as \(m \to 0 \). Thus, in zero order in \(h \), \(\langle T^k_i \rangle \) is comprised of the classical part (the contribution from the free particles) and the local terms associated with the conformal anomaly of the track (see, for example, Ref. 1).

\[< T > = - \frac{1}{2880 \pi^2} \left[k_1 C^k_{1klm} C^{iklm} + k_2 \left(R^{ik} R_{ik} - \frac{1}{3} R^2 \right) + k_3 \Box R \right]. \tag{2} \]

The \(k_1, k_2, \text{ and } k_3 \) constants depend on the field; for photons, for example, \(k_1 = -13, \)
\[k_2 = 62, \text{ and } k_3 = -18. \] To ensure that the classical solutions of the Einstein equations are stable, we must assume that \(k_3 < 0. \) According to Ref. 2, we introduce the specifications \(H^2 = 0 \) and \(M^2 = (360 \pi / G k_3) \). A nonlocal vacuum polarization appears in the first order in \(h \); the production of real particles, which is proportional to \(h^2 \), is given by (Ref. 3)

\[
\frac{1}{\sqrt{-g}} \frac{d \sqrt{-g} \ h}{dt} = \frac{\epsilon}{960 \pi} C_{i k l m} C^{i k l m},
\]

where \(\xi = \frac{1}{3} (2k_1 + k_2) \); \(\xi = 1 \) for neutral scalar particles, \(\xi = 6 \) for four-component fermions with spin \(\frac{1}{2} \), and \(\xi = 12 \) for photons. First, we shall consider the special case \(\mathcal{H} = 0 \), \(h_\alpha^\beta = h_\alpha \mathcal{T}_\alpha^\beta \). The answer for the scalar field can be obtained from the results of Ref. 4 in the following way. The conformally covariant nonlocal part of \(\langle T_i^k \rangle \) differs from that in Appendix I of Ref. 4 only in the factor \(a^{-3} \). The local part of \(\langle T_i^k \rangle \), which appears after the third subtraction, is contained in the integrals of the quantities \(s^{(2)} \), \(u^{(2)} \), \(r^{(3)} \), \(w^{(4)} \), and \(v^{(4)} \) in Ref. 4. After lengthy but straightforward calculations using Eqs. (22) and (II.1) of Ref. 4, we find

\[
p \beta \equiv - < T_{\beta}^\beta > = \frac{1}{960 \pi^2 a^4} \int_{-\infty}^{\infty} e^{-i \omega \eta} \omega^4 \ln \left(\frac{m^2 a^2}{\omega^2} \right) \int_{-\infty}^{\omega} \int_{-\infty}^{\infty} \frac{d \omega}{\omega} \frac{d \omega}{\omega} \frac{d \omega}{\omega} \frac{d \omega}{\omega}
\]

\[
+ \frac{\epsilon}{960 \pi^2 a^4} \int_{-\infty}^{\infty} e^{-i \omega \eta} \omega^4 \ln \left(\frac{m^2 a^2}{\omega^2} \right) \int_{-\infty}^{\omega} \int_{-\infty}^{\infty} \frac{d \omega}{\omega} \frac{d \omega}{\omega} \frac{d \omega}{\omega} \frac{d \omega}{\omega}
\]

where \(h_\beta(\omega) = \int_{-\infty}^{\infty} h_\beta(\eta)e^{i \omega \eta} d \eta, d \eta = dt / a, \) and the prime denotes differentiation with respect to \(\eta \). The expression for \(\langle \text{in} | T_i^k | \text{out} \rangle / \langle \text{in} | \text{out} \rangle \) differs from (4) only in that \(\text{sgn} \omega \) is missing in it in the integrand. The result of the calculation of (4) coincides with that obtained in Ref. 5 to within an accuracy of a factor of 2.

If the nonlocal part of \(\langle T_i^k \rangle \) and the conformal anomaly are known, we can easily determine the expression for the quantum part of \(\langle T_i^k \rangle \) in the first order in \(h \) for the general form of the weakly nonconformal metric

\[
ds^2 = a^2 (x^i \) \left[dx_o^2 - \sum_{\beta = 1}^3 dx_\beta^2 + h_{k l}(x^m) dx^k dx^l \right],
\]

where \(|h_{k l}| \ll 1 \). The metric (1) is a special case of (5). We have

\[
8 \pi G < T_i^k > = M^{-2} A_i^k + H^{-2} B_i^k + \frac{G \xi}{120 \pi a^4} C_i^k,
\]

\[
A_i^k = \frac{1}{6} \left(2 \delta_i^k R_{j l}^j - 2 R_{j l}^j - 2 R R_{i l}^k - \frac{1}{2} \delta_i^k R^2 \right),
\]

439 JETP Lett. Vol. 34, No. 8, 20 October 1981 A. A. Starobinski

439
Here A_i^k and B_i^k are determined from the metric (5) and C_i^k and H_i^k are determined from the metric enclosed in the square brackets in (5) (i.e., without the use of the conformal factor a). It is sufficient to omit $\text{sgn} q_0$ in C_i^k for the transition to $\ln |T_k^k|_{\text{out}}/\ln |\text{out}|$. If H_i^k depends only on η, and $k_1 = k_2 = k_3 = 1$, then Eq. (6) will change to Eq. (4). The term with C_i^k in (6) must be retained only if the conditions $|C_{ikm}^{\text{ckm}}| \gg m^4$ and $|q^2|/m^2 a^2 \gg 1$ are satisfied; otherwise, it should be dropped. Ther terms with A_i^k and B_i^k are valid if the much weaker condition $|R_{ikm}^{\text{ckm}}| \gg m^4$ is satisfied. The A_i^k tensor satisfies the covariant conservation law exactly: $A_i^k;_{;k} = 0$, and the B_i^k and C_i^k tensors satisfy the covariant conservation law with an accuracy to values proportional to h^2; specifically, $B_i^k = 2 C_{ikm}^{\text{ckm}} C_{lm}^{\text{ckm}} ;_{;m}$. The local terms in C_i^k are obtained by varying the action $\int d^4 x \sqrt{-g} C_{ikm}^{\text{ckm}} C_{lm}^{\text{ckm}}$.

The result for $\langle T_i^k \rangle$ given in Ref. 6 differs from (6) by the absence of local terms in C_i^k; a conformally invariant cutoff pulse λ, instead of the mass m, in this case is under the logarithm sign. Such an approach, however, is intrinsically contradictory, if we ignore the local terms in C_i^k and retain A_i^k and B_i^k, since there are generally no conformal anomalies in the theory with a conformally invariant cutoff parameter.

After substituting $\langle T_i^k \rangle$ on the right side of Einstein equations for the metric (1), we obtain the equations for small perturbations. These equations, which are a generalization of the classical Lifshitz equations, become the latter M and $H \to \infty$ and $\xi \to 0$. Specifically, at $h^2 = 0$ for tensor perturbations (gravitation waves) $h_0^2 = g_0^2(\eta) e^{2\Phi} d\tau^2$ (where e_0^2 is the polarization tensor, in the absence of free particles we have $k \equiv |k|$)

\begin{align*}
\langle k = |k| \rangle: \\
g_{kk}^{(2)} \left(1 - \frac{R}{3M^2} + \frac{R - 2 R^0}{3H^2} \right) + g_k^{*} \left[\frac{2}{a} \left(1 - \frac{R}{3M^2} + \frac{2 R^0}{3H^2} \right) - \frac{R^*}{3M^2} \right] \\
+ k^2 g_k \left(1 - \frac{R}{3M^2} + \frac{6 R^0 - R}{3H^2} \right) = \frac{G \xi}{60 \pi a} \left[- \frac{1}{4 \pi} \int_{-\infty}^{\infty} e^{-i \omega \eta} \eta (\omega^2 - k^2)^2 \right]
\times L(\omega) g_k(\omega) d\omega + \frac{2}{a} \left(g_{k}^{**} + k^2 g_{k}^{*} \right) + \left(\frac{a}{\lambda} \right)^2 g_{k}^{**} \\
\right)
\end{align*}

where

\begin{align*}
g_k(\omega) = \int_{-\infty}^{\infty} g_k(\eta) e^{i \omega \eta} d\eta,
L(\omega) = \ln \frac{|\omega^2 - k^2|}{m^2 a^2(\eta)} - i \pi \eta (\omega^2 - k^2) \text{sgn} \omega
\end{align*}

A. A. Starobinskii

440
and the quantities R and R^0_0 are calculated from the unperturbed metric (for $\kappa^0_0 = 0$).

An important, heretofore unnoticed conclusion follows from Eq. (6): In the absence of a classical material the scalar perturbations against the background of a de Sitter quantum stage2 are conformally plane ($\delta C_{iklm} = 0$). The gravitation waves against this background are described exactly by the Lifshitz equation8; moreover, all the invariants comprised of the Weyl tensor vanish. In accordance with the above remark, the term with C_i^K in Eq. (6) must be dropped. It also follows from Eq. (7) that the nonsingular isotropic model of the universe constructed in Ref. 2 can exist only when $M < 2H$. Otherwise, it becomes strongly anisotropic before reaching the Friedmann stage at the moment when

$$1 - \frac{R}{3M^2} + \frac{R - 2R^0_0}{3H^2} = 0.$$

Equation (7) makes it possible to calculate the time r_g of the decay of scalarons into gravitons. Substituting in (7) the evolution law at the scalaron stage2

$$a(t) = a_1 t^{2/3} \left[1 + \frac{2}{3Mt} \sin M(t - t_1) \right],$$

we find $r_g = (3/GM^3)(k_3/k_1)^2$. The decay of scalarons into gravitons is forbidden in theories in which $k_1 = 0$ (Ref. 9) (so that the conformal anomaly is missing when $R_{ik} = 0$).

Translated by S. J. Amoretti
Edited by Robert T. Beyer