The momentum P'_y of the inelastic component is obtained from the energy conservation law $p_y^2/2M+\epsilon_0=p'_y^2/2M-\epsilon_e$. The atom in it decreases after collision at $\Delta < 0$ and increases at $\Delta > 0$. The intensities of the elastic and inelastic components are determined by the expressions $(\alpha_1+a^2\alpha_3)(1+a^2)^{-3}$ and $(\alpha_1-\alpha_3)a^2(1+a^2)^{-2}$, respectively. The splitting angle is $\delta \theta = 2\epsilon_0 M/\theta v^2$. If a laser beam of 25 mW power is focused into a spot of 10^{-2} cm diameter, then at $\theta = 10^{-2}$ rad we obtain $\delta \theta \sim \pm \theta$.

The authors thank G.A. Delone, A.P. Napartovich, and V.I. Khromov for a useful discussion.

Cooling in collision of molecules of two sorts with close vibrational frequencies was considered in\cite{1}. Observation of a slight lowering of the temperature ($\sim 0.2^\circ$) in a CO$_2$-N$_2$ gas mixture under the influence of laser radiation is reported in\cite{2}.

\begin{footnotesize}
\begin{enumerate}
\item T.W. Hänisch and A.L. Shawlow, Optics Commun. 13, 68 (1975).
\item A.M. Bonch-Bruevich, S.G. Przhibil'skii, and V.V. Khromov, Zh. Eksp. Teor. Fiz. 72, 1738 (1977) [Sov. Phys. JETP 45, 912 (1977)].
\end{enumerate}
\end{footnotesize}

New photogalvanic effect in gyrrotropic crystals

E. L. Ivchenko and G. E. Pikus

A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences

(Submitted 20 April 1978)

Pis'ma Zh. Eksp. Teor. Fiz. 27, No. 11, 640–643 (5 June 1978)

It is shown that in gyrrotropic crystals illuminated by circularly polarized light there is produced a photocurrent whose direction changes with changing sign of the polarization. The value of this current is calculated for tellurium in the case of interband and intraband light absorption.

PACS numbers: 72.40.+w

It is known that the photogalvanic effect can be caused by inhomogeneous illumination (for example, the Dember effect) of by sample inhomogeneity (barrier photomf). In homogeneous crystals under stationary homogeneous illumination, the photomf can be due to dragging of the electrons by the photons\cite{3-31} to optical rectification\cite{4}, or to excitation or scattering anisotropy due to the asymmetry of the impurity.
potential.\(^{(5)}\) In the study of these effects it is customary to consider the case of unpolarized or linearly polarized light.

It is shown in the present paper that in gyrotropic crystals illuminated by circularly polarized light, a photocurrent is produced in a direction that varies with changing sign of the polarization. This effect is described by the second-rank tensor

\[
i_{\alpha} = I \gamma_{\alpha \beta} \kappa_{\beta},
\]

where \(\kappa = i [e \times e^*]\), \(e\) is the polarization vector, and \(I\) is the intensity of the light. The tensor \(\gamma\) differs from zero only in gyrotropic crystals in which the components of the polar and axial vectors are transformed in accordance with equivalent representations, and is analogous to the gyration tensor \(g\) that determines the natural optical activity.

Relation (1) is invariant to time reversal. Therefore the considered effect is not connected in principle with dissipative processes, in contrast to the effects investigated in\(^{(4)}\) and\(^{(5)}\), which are described by the tensor

\[
\Lambda: \quad i_{\alpha} = I \lambda_{\alpha \beta \gamma} \left[(e_{\beta} e_{\gamma}^* + e_{\gamma} e_{\beta}^*) / 2 \right]
\]

We have calculated the tensor \(\gamma\) for tellurium crystals (symmetry \(D_3\)), whose band structure is shown in Fig. 1. The conduction band of Te is doubly degenerate at the point \(M\), while in the valence band the degeneracy is completely lifted and the electron and hole spectra are of the form\(^{(6,7)}\)

\[
\epsilon_e (k) = A_e k_z^2 + B_e k_\perp^2 \pm \beta_e k_z,
\]

\[
\epsilon_h (k) = A h k_z^2 + B h k_\perp^2 - (E - \Delta), \quad E = (\Delta^2 + \beta^2 k_z^2)^{1/2}.
\]

FIG. 1. Structure of energy bands of tellurium near the extrema of \(M(P)\).
The \pm sign corresponds to the two branches of the conduction band with angular-momentum projections $m_z = \pm 1/2$. The wave function of the holes is a superposition of states with $m_z = \pm 3/2$

$$\psi_v = C_{3/2} |3/2> - C_{-3/2} |-3/2>, \quad C_{3/2} = \left(\frac{E \mp \beta k_z \hbar}{2E} \right)^{1/2}. \quad (3)$$

When the light propagates along the principal axis z, a longitudinal photocurrent

$$j_z = I \frac{1}{2} \gamma_{zz} \kappa_z = I \gamma_{zz} \mathcal{P}_{\text{circ}}, \quad (4)$$

is produced in Te, where $\mathcal{P}_{\text{circ}}$ is the degree of circular polarization of the radiation (in this case $j'_z = 0$, inasmuch as $\lambda_{\text{z}} = 0$).

Interband transitions. Upon excitation with circularly polarized light with $\hbar \omega > E_g$, depending on the sign of the polarization, the generated electrons either have only $m_z = 1/2$ at $\mathcal{P}_{\text{circ}} = -1$ or $m_z = -1/2$ at $\mathcal{P}_{\text{circ}} = 1$. The transition probability is proportional in this case to $C^2_{-3/2}$ or $C^2_{3/2}$, respectively. Thus, the angular momentum of the photon is transferred to the electron and hole. Owing to the singularities of the spin-orbit interaction, the electron and hole spin orientation is accompanied by directional motion, i.e., the carriers generated by the light acquire average velocities \bar{v}^e_z and \bar{v}^h_z, and this in fact is the cause of the photocurrent. In this case

$$\gamma_{zz} = eK(-\bar{v}^e_z r_p^e + \bar{v}^h_z r_p^h), \quad (5)$$

where K is the absorption coefficient and τ_p^e and τ_p^h are the carrier momentum relaxation times.

If terms linear in k are taken into account in the conduction band only (i.e., at $\beta = 0$), the quantities \bar{v}^e_z and \bar{v}^h_z do not depend on the frequency of the exciting light

$$\bar{v}^e_z = -\bar{v}^h_z = -\frac{\beta_c A}{\hbar} \frac{A_c + A}{A} \mathcal{P}_{\text{circ}}. \quad (6)$$

However, the main contribution should be made by the valence-band terms linear in k, since $\beta > \beta_c^{(6)}$. At $\beta_c = 0$, the values of \bar{v}^e_z and \bar{v}^h_z are determined by the expressions ($\mathcal{P}_{\text{circ}} = 1$)

$$\bar{v}^e_z = v_o \frac{A_c a}{2} F_1(\eta_M), \quad \bar{v}^h_z = v_o \left[-\frac{a}{2} F_1(\eta_M) + F_2(\eta_M) \right]. \quad (7)$$

Here

$$F_1(\eta) = \left[\sqrt{1 + \eta^2} - \eta^{-1} \ln(\eta \oplus \sqrt{1 + \eta^2}) \right], \quad F_2(\eta) = 1 - \eta^{-1} \arctan \eta,$$

$\eta = \beta k_z / A$, $v_o = \beta / \hbar = 4 \times 10^7$ cm/sec, $a = 2 A / \beta c = 0.765, \quad$ and η_M is the maximum value of $|\eta|$ and is defined by the condition ($k = 0$)

$$E_g + \epsilon_c(\eta_M) + \epsilon_v(\eta_M) = \hbar \omega.$$

Figure 2 shows the dependence of $\bar{v}^{eh}(\omega)$ calculated from (7) at $A = 0.363 \times 10^{-14}$ ev-cm2 and $A_c / A = 1$.

606 JETP Lett., Vol. 27, No. 11, 5 June 1978

E.L. Ivchenko and G.E. Pikus 606
Estimates show that in interband transitions the considered effect greatly exceeds the dragging effect, and the ratio of the emf that depends on the sign of $\mathcal{P}_{\text{circ}}$ to the Dember emf is of the order of $(v_c/\bar{u}_c)\sqrt{\tau_p/\tau_e}$, where v_c is the average thermal velocity of the photoelectrons and r_0 is their lifetime.

Intraband transitions. In the frequency region $\hbar\omega < E_g$, the absorption of light is connected with transitions of holes inside the valence band. Calculation show that a considered effect does not occur in direct optical transitions between the nearest branches M_1 and M_2 of the valence band (Fig. 1). It does appear, however, in indirect transitions (within a single branch or between branches) with simultaneous scattering of the holes by the phonon or impurity centers, if one takes into account as virtual states in such transitions the states in the band of symmetry M_3 (in particular, in the conduction band M_{3c}). Estimates show that both in excitation by light of frequency $\omega > \omega_{\text{opt}}$, when the scattering is predominantly with participation of optical phonons (ω_{opt} is the frequency of the optical phonon), and at $\omega < \omega_{\text{opt}}$, when the scattering is by acoustic phonons, the photocurrent (4) is comparable in magnitude with the dragging current.

We note that a photocurrent with a sign that depends on the sign of the field is produced in gyrotropic crystals illuminated by unpolarized light in a longitudinal magnetic field H_z. For tellurium, however, this effect is smaller than the effect considered above to the extent that the parameter $g_i\mu_e H_z/\Delta$ is small, where g_i is the g-factor of the holes and determines the relative shift of the extrema of the band M'_1 in the magnetic field.$^{[6]}$

Inverse effect. In gyrotropic crystals it is possible also to have an inverse effect, wherein passage of current leads only to partial orientation of the free carriers, as a result of which the recombination radiation in interband excitation by unpolarized light should have a partial circular polarization. Calculation shows that in Te crystals the degree of polarization $\mathcal{P}_{\text{circ}} \sim v_{dr}/v_0$, where v_{dr} is the drift velocity of the holes. In
this case the plane or polarization of linearly polarized light should also experience a rotation proportional to the current density.

In conclusion, the authors thank A.A. Rogachev for useful discussions that served as a stimulus for this work.

New method in the theory of a weakly non-ideal one-dimensional Fermi gas

V. Ya. Krivnov and A. A. Ovchinnikov

L. Ya. Karpov Physicotechnical Research Institute
(Submitted 20 April 1978)
Pis'ma Zh. Eksp. Teor. Fiz. 27, No. 11, 644–648 (5 June 1978)

A regular method is proposed for obtaining the energy of the ground state of the spectrum and the correlation functions of a weakly non-ideal one-dimensional Fermi gas.

PACS numbers: 05.30.Fk.

Despite the availability of many exact results in the problem of the non-ideal one-dimensional Fermi gas,1–31 this problem is still far from its complete solution. In particular, if the interaction potential, even if small, is not δ-like, there is no regular method for calculating the energy, the spectrum, and the correlation functions as functions of the interaction constant. Methods of summing “parquet diagrams” and of the renormalization group make it possible to obtain only the leading terms in the corresponding quantities.14,31 On the other hand, the reduction of the real spectrum to the one that is linear in the momentum6–9 is not rigorous and (in any case) not angular for the calculation of the corresponding corrections. The purpose of the present communication is to develop a regular method of obtaining the corrections to the energy, spectrum, and correlation functions of a weakly non-ideal Fermi gas.