For authors
Submission status

Archive (English)
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
VOLUME 87 | ISSUE 12 | PAGE 767
Collapse of solitary waves near transition from supercritical to subcritical bifurcations
D. S. Agafontsev+, F. Dias*, E. A. Kuznetsov^{\nabla+}
+L.D.Landau Institute for Theoretical Physics RAS, 119334 Moscow, Russia
*CMLA, ENS Cachan, CNRS, PRES UniverSud, F-94230 Cachan, France
^{\nabla}P.N. Lebedev Physical Institute, 119991 Moscow, Russia

PACS: 05.45.Yv, 47.20.Ky, 47.55.dr
We study both analytically and numerically the nonlinear stage of the instability of one-dimensional solitons in a small vicinity of the transition point from supercritical to subcritical bifurcations in the framework of the generalized nonlinear Schrödinger equation. It is shown that near the collapsing time the pulse amplitude and its width demonstrate the self-similar behavior with a small asymmetry at the pulse tails due to self-steepening. This theory is applied to both solitary interfacial deep-water waves and envelope water waves with a finite depth and short optical pulses in fibers as well.

Download PS file (GZipped, 101.8K)  |  Download PDF file (201.3K)

Список работ, цитирующих данную статью, см. здесь.

List of articles citing this article can be found here.