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Solitons in a disordered anisotropic optical medium
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The radiation mediated interaction of solitons in a one-dimensional nonlinear medium (optical fiber) with
birefringent disorder is shown to be independent of the separation between solitons. The effect produces a

potentially dangerous contribution into the signal lost.

PACS: 05.45.-a, 42.81.Dp, 46.65.+¢

The propagation of a pulse through an optical fiber
with randomly varying anisotropy is usually addressed
in the context of the Polarization Mode Dispersion
(PMD). PMD is signal broadening caused by inhomo-
geneity of the medium birefringence. In the linear case,
the study of PMD was pioneered by Poole [1], who
showed that the pulse broadens as the two principal
states of polarization split under the action of the ran-
dom birefringence (see also [2]). Mollenauer and co-
authors have numerically studied a nonlinear model of
birefringent disorder in [3], where it was shown that a
soliton, launched into the birefringent fiber, does not
split but it does undergo spreading [3] (see also [4]). In
this letter, we develop an analytical approach and con-
firm that a single soliton does degrade due to disorder
in the birefringence. The degradation is observable once
the soliton traverses the distance zgegr ~ D1, where
D stands for the strength of the noise in the birefrin-
gence, measured in units of the soliton width and period
(D <« 1 is assumed, the typical case for telecommunica-
tion fibers).

The major finding of this letter is a new phenom-
enon which occurs at scales much shorter than zgeg:.
We report that the interaction between solitons induced
by their combined radiation (generated by disorder) is
an important factor affecting the soliton dynamics. Ini-
tially stationary solitons experience a relative acceler-
ation, ~ D. The inter-soliton separation changes on
the order of the soliton width at zin ~ 1/ VD « Zdegr-
We use and generalize here an approach developed pre-
viously to describe solitons interacting in an isotropic
medium with fluctuating dispersion [5]. The soliton in-
teraction, in the case of [5], decays algebraically. By
contrast, in the anisotropic case discussed in this letter
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the interaction is separation-independent. The reason is
that, in this case, a different type of waves scatters from
the solitons. In the isotropic case, the scattering of the
radiated waves, emitted by a soliton, on another soliton
is not refracted. In the anisotropic case, radiation from
one soliton pushes (literally) the other soliton, because
the scattering potential is not transparent.

Let us briefly describe the problem setup. The elec-
tric field E, corresponding to a carrying frequency w
wave packet, can be decomposed into complex compo-
nents E = 2Re [E, exp(ikoz —iwt)], where z is the co-
ordinate along the fiber. Concomitant averaging over
fast oscillations and over the structure of fundamen-
tal mode (a mono-mode regime is assumed) consti-
tutes the coarse-grained description for the signal enve-
lope, described by the two-component complex field ¥,
E, = ¥;(2)e; + ¥z(z)es, where e; » are unit vectors,
orthogonal to each other and to the waveguide direction.
The averaging results in the envelope equation [6, 7]
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Here, the wave packet is subjected to dispersion in re-
tarded time ¢ and to the Kerr nonlinearity, which is de-
scribed by the last two terms on the lhs of (1). The ma-
trix A describes the differences in the wavevectors. The
matrix m describes the anisotropy in the group velocity
for the two distinct states of polarization (of the respec-
tive linear problem). The isotropy is broken in (1), be-
cause the core of any fiber is elliptic rather than circular
in cross-section. It is assumed in (1) that the disper-
sion term and the nonlinear term are isotropic since in
real fibers anisotropy of dispersion and nonlinearity is
usually less important than the effects of anisotropy de-
scribed by the matrices A and 7. The coefficients of
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nonlinearity and dispersion are re-scaled to unity, i.e.
t and z are already dimensionless in (1). If the ma-
trices, m and A, are zero the full problem is isotropic,
and (1) supports the constant polarization solution, e.g.
¥, = 0. Then the equation for ¥; is the Scalar Non-
linear Shrédinger (SNLS) equation. The self-conjugated
matrix A is traceless, as the trace can be excluded by a
simple phase transformation. The (also self-conjugated)
matrix 7 is traceless as (1) is written in the reference
frame moving with the mean group velocity. Both A
and 7 may contain regular and disordered parts. In a
polarization maintaining fiber, at least one of the reg-
ular parts is nonzero. If the phase change between the
two polarizations caused by a regular part (say Areg)
becomes ~ 1 at a scale, zr¢g, an additional averaging
over the distances larger than z;eg reduces (1) to [6, 7]

(iaz+af+2 [Ty |2 +2€ |xp2|2) T1=(A1p+imis0;) Ug, (2)

and analogously for ¥,. The quantities 7 and A left
in Eq. (2) represent random contributions. Generically,
eigenvectors of Areg correspond to elliptic polarizations,
and the corresponding eigenvalues are complex. The
quantity € in Eq. (2) measures the degree of ellipticity,
2/3 < & < 2. In the degenerate limit of linear polar-
ization (the eigenvectors are real) e = 2/3. Subsequent
analysis is devoted to Models (1) and (2) with A = 0
and random zero mean 7. The anisotropy matrix, m,
can be written in terms of Pauli matrices as follows,
m =Y, hx(2)6, where k = 1,2, 3 and the real field hy is
a function of z only because the disorder is frozen in the
fiber. The correlation scale of the random field h;(z) is
short. (It is typically constrained by the process of fiber
pulling from a silica preform, cabling and spooling into
a bobbin.) Therefore, according to the Central Limit
Theorem, h;(z) at the greater scales can be treated as
a Gaussian random process. The noise intensity is de-
scribed by the matrix D, Dix = [ dz (hi(z)hx(2')). One
assumes that the isotropy is restored in average, i.e.
D, o d;x- Then, the statistics of m is characterized
by

<hi(zl)hk(Z2)> = Déikd(zl - 22). (3)

Similarly, one assumes that, A = 3 x bx(2)or, and
<bi(zl)bk(Z2)> = Dbéiké(zl - Zz).

We start from the single soliton story. One looks for
a solution of (1) or (2) in the form

T, = 014 exp(iz) cosh ™ t + v,. 4)

For v1,2 = 0, (4) represents a single soliton solution of
the ideal, @ = 0, problem. If the disorder is weak, one
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can substitute (4) into (1) or (2) and linearize with re-
spect to vz to get

i) () ()2 () s
) R,/ cosht  \Q7,/ cosht
where Rl = h3, Rz = hl +ih2, Ql = ’l:b3, Q2 = ’l,bl — bz,
and i1,2 are second order in ¢ differential operators of the
linear Schrédinger kind, with soliton-shaped (o< 1/ cosh)
potentials. It is convenient to expand v;2 in eigen-
functions of the operators IAq,z. Spectra of the oper-
ators are separated into continuous and discrete parts,
V12 = v&) +71,2. The four zero modes of Ly, are related
to variations of the soliton’s amplitude, position, phase
and phase velocity. There is also a localized eigen-mode
of L, identified with variations of the soliton polariza-
tion. In the case of Model (1) the polarization eigen-
mode becomes a zero-mode of L, correspondent to the
freedom in rotation of polarization axes, and also, an ad-
ditional zero mode related to ellipticity appears. Some
localized modes are subjected to the linear, first order in
disorder, response. Thus the position of the soliton, ¥,
varies randomly in z: (y%) = Dz. Second order effects in
radiation lead to variations of the soliton amplitude, 7.
From the conservation law which accounts for the bal-
ance of “energy” between the soliton and the continuous
radiation (v1,2 = 0 at z = 0 is assumed), one derives,
nD [ dz'n?(2') = 1 —n, where the lhs and the rhs rep-
resent radiative and soliton contributions, respectively,
into the energy balance, and D ~ D. Solution of the
integral equation, valid at any z, is

n=(1+Dz)"/3. (6)

(Note that the single soliton radiation in the degenerate
case of (2) with ¢ =1 was studied in [8], where analogs
of the aforementioned integral equation were derived.
The equation was analyzed in [8] under assumption that
zdn/dz < 1, which led to an answer for the soliton am-
plitude degradation valid at, 2D < 1, only, where it
coincides with (6).)

We now turn to the multi-soliton case. Only scales
shorter than Zgeg: = 1/D are discussed, so the random
walk of y and the degradation of the soliton amplitude
can be neglected. The same argument applies to the
polarization angle, ¢, in the case of Model (2). In the
isotropic model case (1), the jitter of ¢ becomes impor-
tant at zy ~ 1/D'/3. The effect, however, is collective:
polarizations of different solitons rotate to the same an-
gle, so that the relative polarization angle is unchanged
at z € Zgegr- We consider the IV-soliton solution,

N
¥, = Z exp [ia; + i0;(t — yj)] cosh™ (t — ¥;)10 + Va

=1
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of (1), (2). One derives (and solves) generalization of 0 Soliton pair
(5), and equations for the slow variables, y;, a;, 8;, keep- ' ' ' ' '
ing in the later ones terms upto the second order in v. § i
Direct averaging of the slow modes equations over the <A _0.02k
h-statistics is the next step. At z < Zgegr, the relative ) i
phases a; — a; do not change while the soliton positions, §
y;, and phase velocities, 3;, evolve according to, ug —0.04 -
o -
O.y; = =285, 0.8 =Fj, M =
_a 5 -0.06
F; = [ dtU(t) tanh(t — y;) cosh™ (¢t — y;), 3
=i L
where U(t) is a quadratic form of 9, U(t) = 4|9:1]2 + -0.08 ' ' ' ' ! '
0.6 1 1.4 1.8

+ 92 + 92 + 2¢[0a|? for Model 2. The force F; acting
on the soliton, is self-averaged at z > 1. Therefore, we
come to a set of deterministic (like in classical mechan-
ics) equations for the soliton positions and the phase ve-
locities. (The latter play the role of classical momenta.)
The general setting is familiar from [5]. However, the
dependence of the inter-soliton forces on the separation
between the solitons in the polarization problems is dif-
ferent: the force does not depend on the separation. The
key feature of the polarization problems is the refractive
nature of ﬁg, which is closely related to the nonintegra-
bility of the no-disorder (i = 0) problem in both of our
settings (1), (2). This is in contrast with the integrabil-
ity of SNLS, which is the no-disorder limit of the scalar
problem. Due to non-zero refraction, standing waves
are formed in between the solitons, in such a way that
the wave amplitude does not depend on the inter-soliton
separation.

We present here quantitative results for Model (2),
obtained by numerical evaluation of the integral in (7)
(with Uy 2 found, via analytical integration of the gener-
alized version of (5), and averaged over (3)). Descrip-
tion of the calculation details are to be published else-
where. The O(D), y-independent, contribution to the
inter-soliton force for the two-soliton pattern is shown
in Fig.1. The force is independent of the phase mis-
match, a1 — ap. It is always negative (the solitons re-
pel). The minimum value of the force is achieved at the
boundary value, e = 2/3. The separation-independent
contribution is zero at € = 1. This corresponds to trans-
parent scattering, as the no-disorder limit is integrable
in this case [9]. The independence of the force on the
overall size of the soliton pattern persists into the multi-
soliton case, although a new feature, sensitivity to the
phase-mismatches, emerges here. The dependence of
the forces in the three-soliton pattern on the phase mis-
match, in the special case, as = 0, a3 = —a; = a and
e = 2/3, for various values of the relative separation,
y = (ys —y2)/(y2 — y1), is shown in Fig.2. In the “sym-
metric” case, y = 1, F5 = 0 while F3 = —F; and the

Degree of ellipticity (2/3 <g<2)

Fig.1. Two solitons. Inter-soliton force vs degree of
ellipticity

value is twice larger than the force acting on the second
particle in the two-soliton case. In all other, y # 1 sit-
uations the forces do depend on a. The values of the
forces oscillate about the symmetric (y = 1) values.
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Fig.2. Three solitons. Forces vs inter-soliton phase
mismatch

To conclude, we have shown that the major destruc-
tive factor for a set of well separated pulses in random
birefrengent fibers is due to soliton-soliton interaction
mediated by radiation. Note that the analytical method
described in this paper can be easily generalized to a
variety of more complicated sources of anisotropy in op-
tical fibers.
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